Web
and Book design, |
Click
Here to return to |
CHAPTER
VII. INSTINCT. Instincts comparable with habits, but different in their origin—Instincts graduated—Aphides and ants—Instincts variable—Domestic instincts, their origin—Natural instincts of the cuckoo, ostrich, and parasitic bees—Slave-making ants—Hive-bee, its cell-making instinct—Difficulties on the theory of the Natural Selection of instincts—Neuter or sterile insects—Summary. THE
subject of instinct might have been worked into the previous chapters; but I
have thought that it would be more convenient to treat the subject separately,
especially as so wonderful an instinct as that of the hive-bee making its cells
will probably have occurred to many readers, as a difficulty sufficient to
overthrow my whole theory. I must premise, that I have nothing to do with the
origin of the primary mental powers, any more than I have with that of life
itself. We are concerned only with the diversities of instinct and of the other
mental qualities of animals within the same class. I will not
attempt any definition of instinct. It would be easy to show that several
distinct mental actions are commonly embraced by this term; but every one understands
what is meant, when it is said that instinct impels the cuckoo to migrate and
to lay her eggs in other birds’ nests. An action, which we ourselves should
require experience to enable us to perform, when performed by an animal, more
especially by a very young one, without any experience, and when performed by
many individuals in the same way, without their knowing for what purpose it is
performed, is usually said to be instinctive. But I
could show that none of these characters of instinct are universal. A little
dose, as Pierre Huber expresses it, of judgment or reason, often comes into
play, even in animals very low in the scale of nature. Frederick
Cuvier and several of the older metaphysicians have compared instinct with
habit. This comparison gives, I think, a remarkably accurate notion of the
frame of mind under which an instinctive action is performed, but not of its
origin. How unconsciously many habitual actions are performed, indeed not
rarely in direct opposition to our conscious will! yet they may be modified by
the will or reason. Habits easily become associated with other habits, and with
certain periods of time and states of the body. When once acquired, they often
remain constant throughout life. Several other points of resemblance between
instincts and habits could be pointed out. As in repeating a well-known song,
so in instincts, one action follows another by a sort of rhythm; if a person be
interrupted in a song, or in repeating anything by rote, he is generally forced
to go back to recover the habitual train of thought: so P. Huber found it was
with a caterpillar, which makes a very complicated hammock; for if he took a
caterpillar which had completed its hammock up to, say, the sixth stage of
construction, and put it into a hammock completed up only to the third stage,
the caterpillar simply re-performed the fourth, fifth, and sixth stages of
construction. If, however, a caterpillar were taken out of a hammock made up,
for instance, to the third stage, and were put into one finished up to the
sixth stage, so that much of its work was already done for it, far from feeling
the benefit of this, it was much embarrassed, and, in order to complete its
hammock, seemed forced to start from the third stage, where it had left off,
and thus tried to complete the already finished work. If we
suppose any habitual action to become inherited—and I think it can be shown
that this does sometimes happen—then the resemblance between what originally
was a habit and an instinct becomes so close as not to be distinguished. If
Mozart, instead of playing the pianoforte at three years old with wonderfully
little practice, had played a tune with no practice at all, he might truly be
said to have done so instinctively. But it would be the most serious error to suppose
that the greater number of instincts have been acquired by habit in one
generation, and then transmitted by inheritance to succeeding generations. It
can be clearly shown that the most wonderful instincts with which we are
acquainted, namely, those of the hive-bee and of many ants, could not possibly
have been thus acquired. It will be
universally admitted that instincts are as important as corporeal structure for
the welfare of each species, under its present conditions of life. Under
changed conditions of life, it is at least possible that slight modifications
of instinct might be profitable to a species; and if it can be shown that
instincts do vary ever so little, then I can see no difficulty in natural
selection preserving and continually accumulating variations of instinct to any
extent that may be profitable. It is thus, as I believe, that all the most
complex and wonderful instincts have originated. As modifications of corporeal
structure arise from, and are increased by, use or habit, and are diminished or
lost by disuse, so I do not doubt it has been with instincts. But I believe
that the effects of habit are of quite subordinate importance to the effects of
the natural selection of what may be called accidental variations of
instincts;—that is of variations produced by the same unknown causes which
produce slight deviations of bodily structure. No complex
instinct can possibly be produced through natural selection, except by the slow
and gradual accumulation of numerous, slight, yet profitable, variations.
Hence, as in the case of corporeal structures, we ought to find in nature, not
the actual transitional gradations by which each complex instinct has been
acquired—for these could be found only in the lineal ancestors of each
species—but we ought to find in the collateral lines of descent some evidence
of such gradations; or we ought at least to be able to show that gradations of
some kind are possible; and this we certainly can do. I have been surprised to
find, making allowance for the instincts of animals having been but little
observed except in Europe and North America, and for no instinct being known
amongst extinct species, how very generally gradations, leading to the most
complex instincts, can be discovered. The canon of “Natura non facit saltum”
applies with almost equal force to instincts as to bodily organs. Changes of
instinct may sometimes be facilitated by the same species having different
instincts at different periods of life, or at different seasons of the year, or
when placed under different circumstances, &c.; in which case either one or
the other instinct might be preserved by natural selection. And such instances
of diversity of instinct in the same species can be shown to occur in nature. Again as
in the case of corporeal structure, and conformably with my theory, the
instinct of each species is good for itself, but has never, as far as we can
judge, been produced for the exclusive good of others. One of the strongest
instances of an animal apparently performing an action for the sole good of
another, with which I am acquainted, is that of aphides voluntarily yielding
their sweet excretion to ants: that they do so voluntarily, the following facts
show. I removed all the ants from a group of about a dozen aphides on a dock-plant,
and prevented their attendance during several hours. After this interval, I
felt sure that the aphides would want to excrete. I watched them for some time
through a lens, but not one excreted; I then tickled and stroked them with a
hair in the same manner, as well as I could, as the ants do with their antennæ;
but not one excreted. Afterwards I allowed an ant to visit them, and it
immediately seemed, by its eager way of running about, to be well aware what a
rich flock it had discovered; it then began to play with its antennæ on the
abdomen first of one aphis and then of another; and each aphis, as soon as it
felt the antennæ, immediately lifted up its abdomen and excreted a limpid drop
of sweet juice, which was eagerly devoured by the ant. Even the quite young
aphides behaved in this manner, showing that the action was instinctive, and
not the result of experience. But as the excretion is extremely viscid, it is
probably a convenience to the aphides to have it removed; and therefore
probably the aphides do not instinctively excrete for the sole good of the
ants. Although I do not believe that any animal in the world performs an action
for the exclusive good of another of a distinct species, yet each species tries
to take advantage of the instincts of others, as each takes advantage of the
weaker bodily structure of others. So again, in some few cases, certain
instincts cannot be considered as absolutely perfect; but as details on this
and other such points are not indispensable, they may be here passed over. As some
degree of variation in instincts under a state of nature, and the inheritance
of such variations, are indispensable for the action of natural selection, as
many instances as possible ought to have been here given; but want of space
prevents me. I can only assert, that instincts certainly do vary—for instance,
the migratory instinct, both in extent and direction, and in its total loss. So
it is with the nests of birds, which vary partly in dependence on the
situations chosen, and on the nature and temperature of the country inhabited,
but often from causes wholly unknown to us: Audubon has given several
remarkable cases of differences in nests of the same species in the northern
and southern United States. Fear of any particular enemy is certainly an
instinctive quality, as may be seen in nestling birds, though it is
strengthened by experience, and by the sight of fear of the same enemy in other
animals. But fear of man is slowly acquired, as I have elsewhere shown, by
various animals inhabiting desert islands; and we may see an instance of this,
even in England, in the greater wildness of all our large birds than of our
small birds; for the large birds have been most persecuted by man. We may
safely attribute the greater wildness of our large birds to this cause; for in
uninhabited islands large birds are not more fearful than small; and the
magpie, so wary in England, is tame in Norway, as is the hooded crow in Egypt. That the
general disposition of individuals of the same species, born in a state of
nature, is extremely diversified, can be shown by a multitude of facts. Several
cases also, could be given, of occasional and strange habits in certain
species, which might, if advantageous to the species, give rise, through
natural selection, to quite new instincts. But I am well aware that these
general statements, without facts given in detail, can produce but a feeble
effect on the reader’s mind. I can only repeat my assurance, that I do not
speak without good evidence. The
possibility, or even probability, of inherited variations of instinct in a
state of nature will be strengthened by briefly considering a few cases under
domestication. We shall thus also be enabled to see the respective parts which
habit and the selection of so-called accidental variations have played in
modifying the mental qualities of our domestic animals. A number of curious and
authentic instances could be given of the inheritance of all shades of
disposition and tastes, and likewise of the oddest tricks, associated with
certain frames of mind or periods of time. But let us look to the familiar case
of the several breeds of dogs: it cannot be doubted that young pointers (I have
myself seen a striking instance) will sometimes point and even back other dogs
the very first time that they are taken out; retrieving is certainly in some
degree inherited by retrievers; and a tendency to run round, instead of at, a
flock of sheep, by shepherd-dogs. I cannot see that these actions, performed
without experience by the young, and in nearly the same manner by each
individual, performed with eager delight by each breed, and without the end
being known,—for the young pointer can no more know that he points to aid his
master, than the white butterfly knows why she lays her eggs on the leaf of the
cabbage,—I cannot see that these actions differ essentially from true
instincts. If we were to see one kind of wolf, when young and without any
training, as soon as it scented its prey, stand motionless like a statue, and
then slowly crawl forward with a peculiar gait; and another kind of wolf
rushing round, instead of at, a herd of deer, and driving them to a distant
point, we should assuredly call these actions instinctive. Domestic instincts,
as they may be called, are certainly far less fixed or invariable than natural
instincts; but they have been acted on by far less rigorous selection, and have
been transmitted for an incomparably shorter period, under less fixed
conditions of life. How
strongly these domestic instincts, habits, and dispositions are inherited, and
how curiously they become mingled, is well shown when different breeds of dogs
are crossed. Thus it is known that a cross with a bull-dog has affected for
many generations the courage and obstinacy of greyhounds; and a cross with a
greyhound has given to a whole family of shepherd-dogs a tendency to hunt
hares. These domestic instincts, when thus tested by crossing, resemble natural
instincts, which in a like manner become curiously blended together, and for a
long period exhibit traces of the instincts of either parent: for example, Le
Roy describes a dog, whose great-grandfather was a wolf, and this dog showed a
trace of its wild parentage only in one way, by not coming in a straight line
to his master when called. Domestic
instincts are sometimes spoken of as actions which have become inherited solely
from long-continued and compulsory habit, but this, I think, is not true. No
one would ever have thought of teaching, or probably could have taught, the
tumbler-pigeon to tumble,—an action which, as I have witnessed, is performed by
young birds, that have never seen a pigeon tumble. We may believe that some one
pigeon showed a slight tendency to this strange habit, and that the
long-continued selection of the best individuals in successive generations made
tumblers what they now are; and near Glasgow there are house-tumblers, as I
hear from Mr. Brent, which cannot fly eighteen inches high without going head
over heels. It may be doubted whether any one would have thought of training a
dog to point, had not some one dog naturally shown a tendency in this line; and
this is known occasionally to happen, as I once saw in a pure terrier. When the
first tendency was once displayed, methodical selection and the inherited
effects of compulsory training in each successive generation would soon
complete the work; and unconscious selection is still at work, as each man
tries to procure, without intending to improve the breed, dogs which will stand
and hunt best. On the other hand, habit alone in some cases has sufficed; no
animal is more difficult to tame than the young of the wild rabbit; scarcely
any animal is tamer than the young of the tame rabbit; but I do not suppose
that domestic rabbits have ever been selected for tameness; and I presume that
we must attribute the whole of the inherited change from extreme wildness to
extreme tameness, simply to habit and long-continued close confinement. Natural
instincts are lost under domestication: a remarkable instance of this is seen
in those breeds of fowls which very rarely or never become “broody,” that is,
never wish to sit on their eggs. Familiarity alone prevents our seeing how
universally and largely the minds of our domestic animals have been modified by
domestication. It is scarcely possible to doubt that the love of man has become
instinctive in the dog. All wolves, foxes, jackals, and species of the cat
genus, when kept tame, are most eager to attack poultry, sheep, and pigs; and
this tendency has been found incurable in dogs which have been brought home as
puppies from countries, such as Tierra del Fuego and Australia, where the
savages do not keep these domestic animals. How rarely, on the other hand, do
our civilised dogs, even when quite young, require to be taught not to attack
poultry, sheep, and pigs! No doubt they occasionally do make an attack, and are
then beaten; and if not cured, they are destroyed; so that habit, with some
degree of selection, has probably concurred in civilising by inheritance our
dogs. On the other hand, young chickens have lost, wholly by habit, that fear
of the dog and cat which no doubt was originally instinctive in them, in the
same way as it is so plainly instinctive in young pheasants, though reared
under a hen. It is not that chickens have lost all fear, but fear only of dogs
and cats, for if the hen gives the danger-chuckle, they will run (more
especially young turkeys) from under her, and conceal themselves in the
surrounding grass or thickets; and this is evidently done for the instinctive
purpose of allowing, as we see in wild ground-birds, their mother to fly away.
But this instinct retained by our chickens has become useless under
domestication, for the mother-hen has almost lost by disuse the power of
flight. Hence, we
may conclude, that domestic instincts have been acquired and natural instincts
have been lost partly by habit, and partly by man selecting and accumulating
during successive generations, peculiar mental habits and actions, which at
first appeared from what we must in our ignorance call an accident. In some
cases compulsory habit alone has sufficed to produce such inherited mental
changes; in other cases compulsory habit has done nothing, and all has been the
result of selection, pursued both methodically and unconsciously; but in most
cases, probably, habit and selection have acted together. We shall,
perhaps, best understand how instincts in a state of nature have become
modified by selection, by considering a few cases. I will select only three,
out of the several which I shall have to discuss in my future work,—namely, the
instinct which leads the cuckoo to lay her eggs in other birds’ nests; the
slave-making instinct of certain ants; and the comb-making power of the
hive-bee: these two latter instincts have generally, and most justly, been
ranked by naturalists as the most wonderful of all known instincts. It is now
commonly admitted that the more immediate and final cause of the cuckoo’s
instinct is, that she lays her eggs, not daily, but at intervals of two or
three days; so that, if she were to make her own nest and sit on her own eggs,
those first laid would have to be left for some time unincubated, or there
would be eggs and young birds of different ages in the same nest. If this were
the case, the process of laying and hatching might be inconveniently long, more
especially as she has to migrate at a very early period; and the first hatched
young would probably have to be fed by the male alone. But the American cuckoo
is in this predicament; for she makes her own nest and has eggs and young successively
hatched, all at the same time. It has been asserted that the American cuckoo
occasionally lays her eggs in other birds’ nests; but I hear on the high
authority of Dr. Brewer, that this is a mistake. Nevertheless, I could give
several instances of various birds which have been known occasionally to lay
their eggs in other birds’ nests. Now let us suppose that the ancient
progenitor of our European cuckoo had the habits of the American cuckoo; but
that occasionally she laid an egg in another bird’s nest. If the old bird
profited by this occasional habit, or if the young were made more vigorous by
advantage having been taken of the mistaken maternal instinct of another bird,
than by their own mother’s care, encumbered as she can hardly fail to be by having
eggs and young of different ages at the same time; then the old birds or the
fostered young would gain an advantage. And analogy would lead me to believe,
that the young thus reared would be apt to follow by inheritance the occasional
and aberrant habit of their mother, and in their turn would be apt to lay their
eggs in other birds’ nests, and thus be successful in rearing their young. By a
continued process of this nature, I believe that the strange instinct of our
cuckoo could be, and has been, generated. I may add that, according to Dr. Gray
and to some other observers, the European cuckoo has not utterly lost all
maternal love and care for her own offspring. The
occasional habit of birds laying their eggs in other birds’ nests, either of
the same or of a distinct species, is not very uncommon with the Gallinaceæ;
and this perhaps explains the origin of a singular instinct in the allied group
of ostriches. For several hen ostriches, at least in the case of the American
species, unite and lay first a few eggs in one nest and then in another; and
these are hatched by the males. This instinct may probably be accounted for by
the fact of the hens laying a large number of eggs; but, as in the case of the
cuckoo, at intervals of two or three days. This instinct, however, of the
American ostrich has not as yet been perfected; for a surprising number of eggs
lie strewed over the plains, so that in one day’s hunting I picked up no less
than twenty lost and wasted eggs. Many bees
are parasitic, and always lay their eggs in the nests of bees of other kinds.
This case is more remarkable than that of the cuckoo; for these bees have not
only their instincts but their structure modified in accordance with their
parasitic habits; for they do not possess the pollen-collecting apparatus which
would be necessary if they had to store food for their own young. Some species,
likewise, of Sphegidæ (wasp-like insects) are parasitic on other species; and
M. Fabre has lately shown good reason for believing that although the Tachytes
nigra generally makes its own burrow and stores it with paralysed prey for its
own larvæ to feed on, yet that when this insect finds a burrow already made and
stored by another sphex, it takes advantage of the prize, and becomes for the
occasion parasitic. In this case, as with the supposed case of the cuckoo, I
can see no difficulty in natural selection making an occasional habit
permanent, if of advantage to the species, and if the insect whose nest and
stored food are thus feloniously appropriated, be not thus exterminated. Slave-making
instinct.—This remarkable instinct was first discovered in the
Formica (Polyerges) rufescens by Pierre Huber, a better observer even than his
celebrated father. This ant is absolutely dependent on its slaves; without their
aid, the species would certainly become extinct in a single year. The males and
fertile females do no work. The workers or sterile females, though most
energetic and courageous in capturing slaves, do no other work. They are
incapable of making their own nests, or of feeding their own larvæ. When the
old nest is found inconvenient, and they have to migrate, it is the slaves
which determine the migration, and actually carry their masters in their jaws.
So utterly helpless are the masters, that when Huber shut up thirty of them
without a slave, but with plenty of the food which they like best, and with
their larvæ and pupæ to stimulate them to work, they did nothing; they could
not even feed themselves, and many perished of hunger. Huber then introduced a
single slave (F. fusca), and she instantly set to work, fed and saved the
survivors; made some cells and tended the larvæ, and put all to rights. What
can be more extraordinary than these well-ascertained facts? If we had not
known of any other slave-making ant, it would have been hopeless to have
speculated how so wonderful an instinct could have been perfected. Formica
sanguinea was likewise first discovered by P. Huber to be a slave-making ant.
This species is found in the southern parts of England, and its habits have
been attended to by Mr. F. Smith, of the British Museum, to whom I am much
indebted for information on this and other subjects. Although fully trusting to
the statements of Huber and Mr. Smith, I tried to approach the subject in a
sceptical frame of mind, as any one may well be excused for doubting the truth
of so extraordinary and odious an instinct as that of making slaves. Hence I
will give the observations which I have myself made, in some little detail. I
opened fourteen nests of F. sanguinea, and found a few slaves in all. Males and
fertile females of the slave-species are found only in their own proper
communities, and have never been observed in the nests of F. sanguinea. The
slaves are black and not above half the size of their red masters, so that the
contrast in their appearance is very great. When the nest is slightly
disturbed, the slaves occasionally come out, and like their masters are much
agitated and defend the nest: when the nest is much disturbed and the larvæ and
pupæ are exposed, the slaves work energetically with their masters in carrying
them away to a place of safety. Hence, it is clear, that the slaves feel quite
at home. During the months of June and July, on three successive years, I have
watched for many hours several nests in Surrey and Sussex, and never saw a
slave either leave or enter a nest. As, during these months, the slaves are
very few in number, I thought that they might behave differently when more
numerous; but Mr. Smith informs me that he has watched the nests at various
hours during May, June and August, both in Surrey and Hampshire, and has never
seen the slaves, though present in large numbers in August, either leave or
enter the nest. Hence he considers them as strictly household slaves. The
masters, on the other hand, may be constantly seen bringing in materials for
the nest, and food of all kinds. During the present year, however, in the month
of July, I came across a community with an unusually large stock of slaves, and
I observed a few slaves mingled with their masters leaving the nest, and
marching along the same road to a tall Scotch-fir-tree, twenty-five yards
distant, which they ascended together, probably in search of aphides or cocci.
According to Huber, who had ample opportunities for observation, in Switzerland
the slaves habitually work with their masters in making the nest, and they
alone open and close the doors in the morning and evening; and, as Huber
expressly states, their principal office is to search for aphides. This
difference in the usual habits of the masters and slaves in the two countries,
probably depends merely on the slaves being captured in greater numbers in
Switzerland than in England. One day I
fortunately chanced to witness a migration from one nest to another, and it was
a most interesting spectacle to behold the masters carefully carrying, as Huber
has described, their slaves in their jaws. Another day my attention was struck
by about a score of the slave-makers haunting the same spot, and evidently not
in search of food; they approached and were vigorously repulsed by an
independent community of the slave species (F. fusca); sometimes as many as
three of these ants clinging to the legs of the slave-making F. sanguinea. The
latter ruthlessly killed their small opponents, and carried their dead bodies
as food to their nest, twenty-nine yards distant; but they were prevented from
getting any pupæ to rear as slaves. I then dug up a small parcel of the pupæ of
F. fusca from another nest, and put them down on a bare spot near the place of
combat; they were eagerly seized, and carried off by the tyrants, who perhaps
fancied that, after all, they had been victorious in their late combat. At the
same time I laid on the same place a small parcel of the pupæ of another
species, F. flava, with a few of these little yellow ants still clinging to the
fragments of the nest. This species is sometimes, though rarely, made into
slaves, as has been described by Mr. Smith. Although so small a species, it is
very courageous, and I have seen it ferociously attack other ants. In one
instance I found to my surprise an independent community of F. flava under a
stone beneath a nest of the slave-making F. sanguinea; and when I had
accidentally disturbed both nests, the little ants attacked their big neighbours
with surprising courage. Now I was curious to ascertain whether F. sanguinea
could distinguish the pupæ of F. fusca, which they habitually make into slaves,
from those of the little and furious F. flava, which they rarely capture, and
it was evident that they did at once distinguish them: for we have seen that
they eagerly and instantly seized the pupæ of F. fusca, whereas they were much
terrified when they came across the pupæ, or even the earth from the nest of F.
flava, and quickly ran away; but in about a quarter of an hour, shortly after
all the little yellow ants had crawled away, they took heart and carried off
the pupæ. One
evening I visited another community of F. sanguinea, and found a number of
these ants entering their nest, carrying the dead bodies of F. fusca (showing
that it was not a migration) and numerous pupæ. I traced the returning file
burthened with booty, for about forty yards, to a very thick clump of heath,
whence I saw the last individual of F. sanguinea emerge, carrying a pupa; but I
was not able to find the desolated nest in the thick heath. The nest, however,
must have been close at hand, for two or three individuals of F. fusca were
rushing about in the greatest agitation, and one was perched motionless with
its own pupa in its mouth on the top of a spray of heath over its ravaged home. Such are
the facts, though they did not need confirmation by me, in regard to the
wonderful instinct of making slaves. Let it be observed what a contrast the
instinctive habits of F. sanguinea present with those of the F. rufescens. The
latter does not build its own nest, does not determine its own migrations, does
not collect food for itself or its young, and cannot even feed itself: it is
absolutely dependent on its numerous slaves. Formica sanguinea, on the other
hand, possesses much fewer slaves, and in the early part of the summer
extremely few. The masters determine when and where a new nest shall be formed,
and when they migrate, the masters carry the slaves. Both in Switzerland and England
the slaves seem to have the exclusive care of the larvæ, and the masters alone
go on slave-making expeditions. In Switzerland the slaves and masters work
together, making and bringing materials for the nest: both, but chiefly the
slaves, tend, and milk as it may be called, their aphides; and thus both
collect food for the community. In England the masters alone usually leave the
nest to collect building materials and food for themselves, their slaves and
larvæ. So that the masters in this country receive much less service from their
slaves than they do in Switzerland. By what
steps the instinct of F. sanguinea originated I will not pretend to conjecture.
But as ants, which are not slave-makers, will, as I have seen, carry off pupæ
of other species, if scattered near their nests, it is possible that pupæ
originally stored as food might become developed; and the ants thus
unintentionally reared would then follow their proper instincts, and do what
work they could. If their presence proved useful to the species which had
seized them—if it were more advantageous to this species to capture workers
than to procreate them—the habit of collecting pupæ originally for food might
by natural selection be strengthened and rendered permanent for the very
different purpose of raising slaves. When the instinct was once acquired, if
carried out to a much less extent even than in our British F. sanguinea, which,
as we have seen, is less aided by its slaves than the same species in
Switzerland, I can see no difficulty in natural selection increasing and
modifying the instinct—always supposing each modification to be of use to the
species—until an ant was formed as abjectly dependent on its slaves as is the
Formica rufescens. Cell-making
instinct of the Hive-Bee.—I will not here enter on minute details on this
subject, but will merely give an outline of the conclusions at which I have
arrived. He must be a dull man who can examine the exquisite structure of a
comb, so beautifully adapted to its end, without enthusiastic admiration. We
hear from mathematicians that bees have practically solved a recondite problem,
and have made their cells of the proper shape to hold the greatest possible
amount of honey, with the least possible consumption of precious wax in their
construction. It has been remarked that a skilful workman, with fitting tools
and measures, would find it very difficult to make cells of wax of the true
form, though this is perfectly effected by a crowd of bees working in a dark
hive. Grant whatever instincts you please, and it seems at first quite
inconceivable how they can make all the necessary angles and planes, or even
perceive when they are correctly made. But the difficulty is not nearly so
great as it at first appears: all this beautiful work can be shown, I think, to
follow from a few very simple instincts. I was led
to investigate this subject by Mr. Waterhouse, who has shown that the form of
the cell stands in close relation to the presence of adjoining cells; and the
following view may, perhaps, be considered only as a modification of his
theory. Let us look to the great principle of gradation, and see whether Nature
does not reveal to us her method of work. At one end of a short series we have
humble-bees, which use their old cocoons to hold honey, sometimes adding to
them short tubes of wax, and likewise making separate and very irregular
rounded cells of wax. At the other end of the series we have the cells of the
hive-bee, placed in a double layer: each cell, as is well known, is an
hexagonal prism, with the basal edges of its six sides bevelled so as to join
on to a pyramid, formed of three rhombs. These rhombs have certain angles, and
the three which form the pyramidal base of a single cell on one side of the
comb, enter into the composition of the bases of three adjoining cells on the
opposite side. In the series between the extreme perfection of the cells of the
hive-bee and the simplicity of those of the humble-bee, we have the cells of
the Mexican Melipona domestica, carefully described and figured by Pierre
Huber. The Melipona itself is intermediate in structure between the hive and
humble bee, but more nearly related to the latter: it forms a nearly regular
waxen comb of cylindrical cells, in which the young are hatched, and, in
addition, some large cells of wax for holding honey. These latter cells are
nearly spherical and of nearly equal sizes, and are aggregated into an
irregular mass. But the important point to notice, is that these cells are
always made at that degree of nearness to each other, that they would have
intersected or broken into each other, if the spheres had been completed; but
this is never permitted, the bees building perfectly flat walls of wax between
the spheres which thus tend to intersect. Hence each cell consists of an outer
spherical portion and of two, three, or more perfectly flat surfaces, according
as the cell adjoins two, three or more other cells. When one cell comes into
contact with three other cells, which, from the spheres being nearly of the
same size, is very frequently and necessarily the case, the three flat surfaces
are united into a pyramid; and this pyramid, as Huber has remarked, is
manifestly a gross imitation of the three-sided pyramidal basis of the cell of
the hive-bee. As in the cells of the hive-bee, so here, the three plane
surfaces in any one cell necessarily enter into the construction of three
adjoining cells. It is obvious that the Melipona saves wax by this manner of
building; for the flat walls between the adjoining cells are not double, but are
of the same thickness as the outer spherical portions, and yet each flat
portion forms a part of two cells. Reflecting
on this case, it occurred to me that if the Melipona had made its spheres at
some given distance from each other, and had made them of equal sizes and had
arranged them symmetrically in a double layer, the resulting structure would
probably have been as perfect as the comb of the hive-bee. Accordingly I wrote
to Professor Miller, of Cambridge, and this geometer has kindly read over the following
statement, drawn up from his information, and tells me that it is strictly
correct:— If a
number of equal spheres be described with their centres placed in two parallel
layers; with the centre of each sphere at the distance of radius x √ 2, or
radius x 1.41421 (or at some lesser distance), from the centres of the six
surrounding spheres in the same layer; and at the same distance from the
centres of the adjoining spheres in the other and parallel layer; then, if
planes of intersection between the several spheres in both layers be formed,
there will result a double layer of hexagonal prisms united together by
pyramidal bases formed of three rhombs; and the rhombs and the sides of the
hexagonal prisms will have every angle identically the same with the best
measurements which have been made of the cells of the hive-bee. Hence we
may safely conclude that if we could slightly modify the instincts already
possessed by the Melipona, and in themselves not very wonderful, this bee would
make a structure as wonderfully perfect as that of the hive-bee. We must
suppose the Melipona to make her cells truly spherical, and of equal sizes; and
this would not be very surprising, seeing that she already does so to a certain
extent, and seeing what perfectly cylindrical burrows in wood many insects can
make, apparently by turning round on a fixed point. We must suppose the
Melipona to arrange her cells in level layers, as she already does her
cylindrical cells; and we must further suppose, and this is the greatest difficulty,
that she can somehow judge accurately at what distance to stand from her
fellow-labourers when several are making their spheres; but she is already so
far enabled to judge of distance, that she always describes her spheres so as
to intersect largely; and then she unites the points of intersection by
perfectly flat surfaces. We have further to suppose, but this is no difficulty,
that after hexagonal prisms have been formed by the intersection of adjoining
spheres in the same layer, she can prolong the hexagon to any length requisite
to hold the stock of honey; in the same way as the rude humble-bee adds
cylinders of wax to the circular mouths of her old cocoons. By such
modifications of instincts in themselves not very wonderful,—hardly more
wonderful than those which guide a bird to make its nest,—I believe that the
hive-bee has acquired, through natural selection, her inimitable architectural
powers. But this
theory can be tested by experiment. Following the example of Mr. Tegetmeier, I
separated two combs, and put between them a long, thick, square strip of wax:
the bees instantly began to excavate minute circular pits in it; and as they
deepened these little pits, they made them wider and wider until they were
converted into shallow basins, appearing to the eye perfectly true or parts of
a sphere, and of about the diameter of a cell. It was most interesting to me to
observe that wherever several bees had begun to excavate these basins near
together, they had begun their work at such a distance from each other, that by
the time the basins had acquired the above stated width (i.e. about the width
of an ordinary cell), and were in depth about one sixth of the diameter of the
sphere of which they formed a part, the rims of the basins intersected or broke
into each other. As soon as this occurred, the bees ceased to excavate, and
began to build up flat walls of wax on the lines of intersection between the
basins, so that each hexagonal prism was built upon the festooned edge of a
smooth basin, instead of on the straight edges of a three-sided pyramid as in
the case of ordinary cells. I then put
into the hive, instead of a thick, square piece of wax, a thin and narrow,
knife-edged ridge, coloured with vermilion. The bees instantly began on both
sides to excavate little basins near to each other, in the same way as before;
but the ridge of wax was so thin, that the bottoms of the basins, if they had
been excavated to the same depth as in the former experiment, would have broken
into each other from the opposite sides. The bees, however, did not suffer this
to happen, and they stopped their excavations in due time; so that the basins,
as soon as they had been a little deepened, came to have flat bottoms; and
these flat bottoms, formed by thin little plates of the vermilion wax having
been left ungnawed, were situated, as far as the eye could judge, exactly along
the planes of imaginary intersection between the basins on the opposite sides
of the ridge of wax. In parts, only little bits, in other parts, large portions
of a rhombic plate had been left between the opposed basins, but the work, from
the unnatural state of things, had not been neatly performed. The bees must
have worked at very nearly the same rate on the opposite sides of the ridge of
vermilion wax, as they circularly gnawed away and deepened the basins on both
sides, in order to have succeeded in thus leaving flat plates between the
basins, by stopping work along the intermediate planes or planes of
intersection. Considering
how flexible thin wax is, I do not see that there is any difficulty in the
bees, whilst at work on the two sides of a strip of wax, perceiving when they
have gnawed the wax away to the proper thinness, and then stopping their work.
In ordinary combs it has appeared to me that the bees do not always succeed in
working at exactly the same rate from the opposite sides; for I have noticed
half-completed rhombs at the base of a just-commenced cell, which were slightly
concave on one side, where I suppose that the bees had excavated too quickly,
and convex on the opposed side, where the bees had worked less quickly. In one
well-marked instance, I put the comb back into the hive, and allowed the bees
to go on working for a short time, and again examined the cell, and I found
that the rhombic plate had been completed, and had become perfectly flat:
it was absolutely impossible, from the extreme thinness of the little rhombic
plate, that they could have effected this by gnawing away the convex side; and
I suspect that the bees in such cases stand in the opposed cells and push and
bend the ductile and warm wax (which as I have tried is easily done) into its
proper intermediate plane, and thus flatten it. From the
experiment of the ridge of vermilion wax, we can clearly see that if the bees
were to build for themselves a thin wall of wax, they could make their cells of
the proper shape, by standing at the proper distance from each other, by
excavating at the same rate, and by endeavouring to make equal spherical
hollows, but never allowing the spheres to break into each other. Now bees, as
may be clearly seen by examining the edge of a growing comb, do make a rough,
circumferential wall or rim all round the comb; and they gnaw into this from
the opposite sides, always working circularly as they deepen each cell. They do
not make the whole three-sided pyramidal base of any one cell at the same time,
but only the one rhombic plate which stands on the extreme growing margin, or
the two plates, as the case may be; and they never complete the upper edges of the
rhombic plates, until the hexagonal walls are commenced. Some of these
statements differ from those made by the justly celebrated elder Huber, but I
am convinced of their accuracy; and if I had space, I could show that they are
conformable with my theory. Huber’s
statement that the very first cell is excavated out of a little parallel-sided
wall of wax, is not, as far as I have seen, strictly correct; the first
commencement having always been a little hood of wax; but I will not here enter
on these details. We see how important a part excavation plays in the
construction of the cells; but it would be a great error to suppose that the
bees cannot build up a rough wall of wax in the proper position—that is, along
the plane of intersection between two adjoining spheres. I have several
specimens showing clearly that they can do this. Even in the rude
circumferential rim or wall of wax round a growing comb, flexures may sometimes
be observed, corresponding in position to the planes of the rhombic basal plates
of future cells. But the rough wall of wax has in every case to be finished
off, by being largely gnawed away on both sides. The manner in which the bees
build is curious; they always make the first rough wall from ten to twenty
times thicker than the excessively thin finished wall of the cell, which will
ultimately be left. We shall understand how they work, by supposing masons
first to pile up a broad ridge of cement, and then to begin cutting it away
equally on both sides near the ground, till a smooth, very thin wall is left in
the middle; the masons always piling up the cut-away cement, and adding fresh
cement, on the summit of the ridge. We shall thus have a thin wall steadily
growing upward; but always crowned by a gigantic coping. From all the cells,
both those just commenced and those completed, being thus crowned by a strong
coping of wax, the bees can cluster and crawl over the comb without injuring
the delicate hexagonal walls, which are only about one four-hundredth of an
inch in thickness; the plates of the pyramidal basis being about twice as
thick. By this singular manner of building, strength is continually given to
the comb, with the utmost ultimate economy of wax. It seems
at first to add to the difficulty of understanding how the cells are made, that
a multitude of bees all work together; one bee after working a short time at
one cell going to another, so that, as Huber has stated, a score of individuals
work even at the commencement of the first cell. I was able practically to show
this fact, by covering the edges of the hexagonal walls of a single cell, or
the extreme margin of the circumferential rim of a growing comb, with an
extremely thin layer of melted vermilion wax; and I invariably found that the
colour was most delicately diffused by the bees—as delicately as a painter
could have done with his brush—by atoms of the coloured wax having been taken
from the spot on which it had been placed, and worked into the growing edges of
the cells all round. The work of construction seems to be a sort of balance
struck between many bees, all instinctively standing at the same relative
distance from each other, all trying to sweep equal spheres, and then building
up, or leaving ungnawed, the planes of intersection between these spheres. It
was really curious to note in cases of difficulty, as when two pieces of comb
met at an angle, how often the bees would entirely pull down and rebuild in
different ways the same cell, sometimes recurring to a shape which they had at
first rejected. When bees
have a place on which they can stand in their proper positions for working,—for
instance, on a slip of wood, placed directly under the middle of a comb growing
downwards so that the comb has to be built over one face of the slip—in this
case the bees can lay the foundations of one wall of a new hexagon, in its
strictly proper place, projecting beyond the other completed cells. It suffices
that the bees should be enabled to stand at their proper relative distances
from each other and from the walls of the last completed cells, and then, by
striking imaginary spheres, they can build up a wall intermediate between two
adjoining spheres; but, as far as I have seen, they never gnaw away and finish
off the angles of a cell till a large part both of that cell and of the
adjoining cells has been built. This capacity in bees of laying down under
certain circumstances a rough wall in its proper place between two
just-commenced cells, is important, as it bears on a fact, which seems at first
quite subversive of the foregoing theory; namely, that the cells on the extreme
margin of wasp-combs are sometimes strictly hexagonal; but I have not space
here to enter on this subject. Nor does there seem to me any great difficulty
in a single insect (as in the case of a queen-wasp) making hexagonal cells, if
she work alternately on the inside and outside of two or three cells commenced
at the same time, always standing at the proper relative distance from the
parts of the cells just begun, sweeping spheres or cylinders, and building up
intermediate planes. It is even conceivable that an insect might, by fixing on
a point at which to commence a cell, and then moving outside, first to one
point, and then to five other points, at the proper relative distances from the
central point and from each other, strike the planes of intersection, and so
make an isolated hexagon: but I am not aware that any such case has been
observed; nor would any good be derived from a single hexagon being built, as
in its construction more materials would be required than for a cylinder. As natural
selection acts only by the accumulation of slight modifications of structure or
instinct, each profitable to the individual under its conditions of life, it
may reasonably be asked, how a long and graduated succession of modified
architectural instincts, all tending towards the present perfect plan of
construction, could have profited the progenitors of the hive-bee? I think the
answer is not difficult: it is known that bees are often hard pressed to get
sufficient nectar; and I am informed by Mr. Tegetmeier that it has been
experimentally found that no less than from twelve to fifteen pounds of dry
sugar are consumed by a hive of bees for the secretion of each pound of wax; so
that a prodigious quantity of fluid nectar must be collected and consumed by
the bees in a hive for the secretion of the wax necessary for the construction
of their combs. Moreover, many bees have to remain idle for many days during
the process of secretion. A large store of honey is indispensable to support a
large stock of bees during the winter; and the security of the hive is known
mainly to depend on a large number of bees being supported. Hence the saving of
wax by largely saving honey must be a most important element of success in any
family of bees. Of course the success of any species of bee may be dependent on
the number of its parasites or other enemies, or on quite distinct causes, and
so be altogether independent of the quantity of honey which the bees could
collect. But let us suppose that this latter circumstance determined, as it
probably often does determine, the numbers of a humble-bee which could exist in
a country; and let us further suppose that the community lived throughout the
winter, and consequently required a store of honey: there can in this case be
no doubt that it would be an advantage to our humble-bee, if a slight
modification of her instinct led her to make her waxen cells near together, so
as to intersect a little; for a wall in common even to two adjoining cells,
would save some little wax. Hence it would continually be more and more
advantageous to our humble-bee, if she were to make her cells more and more
regular, nearer together, and aggregated into a mass, like the cells of the
Melipona; for in this case a large part of the bounding surface of each cell
would serve to bound other cells, and much wax would be saved. Again, from the
same cause, it would be advantageous to the Melipona, if she were to make her
cells closer together, and more regular in every way than at present; for then,
as we have seen, the spherical surfaces would wholly disappear, and would all
be replaced by plane surfaces; and the Melipona would make a comb as perfect as
that of the hive-bee. Beyond this stage of perfection in architecture, natural
selection could not lead; for the comb of the hive-bee, as far as we can see,
is absolutely perfect in economising wax. Thus, as I
believe, the most wonderful of all known instincts, that of the hive-bee, can
be explained by natural selection having taken advantage of numerous,
successive, slight modifications of simpler instincts; natural selection having
by slow degrees, more and more perfectly, led the bees to sweep equal spheres
at a given distance from each other in a double layer, and to build up and
excavate the wax along the planes of intersection. The bees, of course, no more
knowing that they swept their spheres at one particular distance from each
other, than they know what are the several angles of the hexagonal prisms and
of the basal rhombic plates. The motive power of the process of natural
selection having been economy of wax; that individual swarm which wasted least
honey in the secretion of wax, having succeeded best, and having transmitted by
inheritance its newly acquired economical instinct to new swarms, which in
their turn will have had the best chance of succeeding in the struggle for
existence. No doubt
many instincts of very difficult explanation could be opposed to the theory of
natural selection,—cases, in which we cannot see how an instinct could possibly
have originated; cases, in which no intermediate gradations are known to exist;
cases of instinct of apparently such trifling importance, that they could
hardly have been acted on by natural selection; cases of instincts almost identically
the same in animals so remote in the scale of nature, that we cannot account
for their similarity by inheritance from a common parent, and must therefore
believe that they have been acquired by independent acts of natural selection.
I will not here enter on these several cases, but will confine myself to one
special difficulty, which at first appeared to me insuperable, and actually
fatal to my whole theory. I allude to the neuters or sterile females in
insect-communities: for these neuters often differ widely in instinct and in
structure from both the males and fertile females, and yet, from being sterile,
they cannot propagate their kind. The
subject well deserves to be discussed at great length, but I will here take
only a single case, that of working or sterile ants. How the workers have been
rendered sterile is a difficulty; but not much greater than that of any other
striking modification of structure; for it can be shown that some insects and
other articulate animals in a state of nature occasionally become sterile; and
if such insects had been social, and it had been profitable to the community
that a number should have been annually born capable of work, but incapable of
procreation, I can see no very great difficulty in this being effected by
natural selection. But I must pass over this preliminary difficulty. The great
difficulty lies in the working ants differing widely from both the males and
the fertile females in structure, as in the shape of the thorax and in being
destitute of wings and sometimes of eyes, and in instinct. As far as instinct
alone is concerned, the prodigious difference in this respect between the
workers and the perfect females, would have been far better exemplified by the
hive-bee. If a working ant or other neuter insect had been an animal in the
ordinary state, I should have unhesitatingly assumed that all its characters
had been slowly acquired through natural selection; namely, by an individual
having been born with some slight profitable modification of structure, this
being inherited by its offspring, which again varied and were again selected,
and so onwards. But with the working ant we have an insect differing greatly
from its parents, yet absolutely sterile; so that it could never have
transmitted successively acquired modifications of structure or instinct to its
progeny. It may well be asked how is it possible to reconcile this case with
the theory of natural selection? First, let
it be remembered that we have innumerable instances, both in our domestic
productions and in those in a state of nature, of all sorts of differences of
structure which have become correlated to certain ages, and to either sex. We
have differences correlated not only to one sex, but to that short period alone
when the reproductive system is active, as in the nuptial plumage of many
birds, and in the hooked jaws of the male salmon. We have even slight
differences in the horns of different breeds of cattle in relation to an
artificially imperfect state of the male sex; for oxen of certain breeds have
longer horns than in other breeds, in comparison with the horns of the bulls or
cows of these same breeds. Hence I can see no real difficulty in any character
having become correlated with the sterile condition of certain members of
insect-communities: the difficulty lies in understanding how such correlated
modifications of structure could have been slowly accumulated by natural
selection. This
difficulty, though appearing insuperable, is lessened, or, as I believe,
disappears, when it is remembered that selection may be applied to the family,
as well as to the individual, and may thus gain the desired end. Thus, a
well-flavoured vegetable is cooked, and the individual is destroyed; but the
horticulturist sows seeds of the same stock, and confidently expects to get
nearly the same variety; breeders of cattle wish the flesh and fat to be well
marbled together; the animal has been slaughtered, but the breeder goes with
confidence to the same family. I have such faith in the powers of selection, that
I do not doubt that a breed of cattle, always yielding oxen with
extraordinarily long horns, could be slowly formed by carefully watching which
individual bulls and cows, when matched, produced oxen with the longest horns;
and yet no one ox could ever have propagated its kind. Thus I believe it has
been with social insects: a slight modification of structure, or instinct,
correlated with the sterile condition of certain members of the community, has
been advantageous to the community: consequently the fertile males and females
of the same community flourished, and transmitted to their fertile offspring a
tendency to produce sterile members having the same modification. And I believe
that this process has been repeated, until that prodigious amount of difference
between the fertile and sterile females of the same species has been produced,
which we see in many social insects. But we
have not as yet touched on the climax of the difficulty; namely, the fact that
the neuters of several ants differ, not only from the fertile females and
males, but from each other, sometimes to an almost incredible degree, and are
thus divided into two or even three castes. The castes, moreover, do not
generally graduate into each other, but are perfectly well defined; being as distinct
from each other, as are any two species of the same genus, or rather as any two
genera of the same family. Thus in Eciton, there are working and soldier
neuters, with jaws and instincts extraordinarily different: in Cryptocerus, the
workers of one caste alone carry a wonderful sort of shield on their heads, the
use of which is quite unknown: in the Mexican Myrmecocystus, the workers of one
caste never leave the nest; they are fed by the workers of another caste, and
they have an enormously developed abdomen which secretes a sort of honey,
supplying the place of that excreted by the aphides, or the domestic cattle as
they may be called, which our European ants guard or imprison. It will
indeed be thought that I have an overweening confidence in the principle of
natural selection, when I do not admit that such wonderful and well-established
facts at once annihilate my theory. In the simpler case of neuter insects all
of one caste or of the same kind, which have been rendered by natural
selection, as I believe to be quite possible, different from the fertile males
and females,—in this case, we may safely conclude from the analogy of ordinary
variations, that each successive, slight, profitable modification did not
probably at first appear in all the individual neuters in the same nest, but in
a few alone; and that by the long-continued selection of the fertile parents
which produced most neuters with the profitable modification, all the neuters
ultimately came to have the desired character. On this view we ought
occasionally to find neuter-insects of the same species, in the same nest,
presenting gradations of structure; and this we do find, even often,
considering how few neuter-insects out of Europe have been carefully examined.
Mr. F. Smith has shown how surprisingly the neuters of several British ants
differ from each other in size and sometimes in colour; and that the extreme
forms can sometimes be perfectly linked together by individuals taken out of
the same nest: I have myself compared perfect gradations of this kind. It often
happens that the larger or the smaller sized workers are the most numerous; or
that both large and small are numerous, with those of an intermediate size
scanty in numbers. Formica flava has larger and smaller workers, with some of
intermediate size; and, in this species, as Mr. F. Smith has observed, the
larger workers have simple eyes (ocelli), which though small can be plainly
distinguished, whereas the smaller workers have their ocelli rudimentary.
Having carefully dissected several specimens of these workers, I can affirm
that the eyes are far more rudimentary in the smaller workers than can be
accounted for merely by their proportionally lesser size; and I fully believe,
though I dare not assert so positively, that the workers of intermediate size
have their ocelli in an exactly intermediate condition. So that we here have
two bodies of sterile workers in the same nest, differing not only in size, but
in their organs of vision, yet connected by some few members in an intermediate
condition. I may digress by adding, that if the smaller workers had been the
most useful to the community, and those males and females had been continually
selected, which produced more and more of the smaller workers, until all the
workers had come to be in this condition; we should then have had a species of
ant with neuters very nearly in the same condition with those of Myrmica. For
the workers of Myrmica have not even rudiments of ocelli, though the male and
female ants of this genus have well-developed ocelli. I may give
one other case: so confidently did I expect to find gradations in important
points of structure between the different castes of neuters in the same
species, that I gladly availed myself of Mr. F. Smith’s offer of numerous
specimens from the same nest of the driver ant (Anomma) of West Africa. The
reader will perhaps best appreciate the amount of difference in these workers,
by my giving not the actual measurements, but a strictly accurate illustration:
the difference was the same as if we were to see a set of workmen building a
house of whom many were five feet four inches high, and many sixteen feet high;
but we must suppose that the larger workmen had heads four instead of three
times as big as those of the smaller men, and jaws nearly five times as big.
The jaws, moreover, of the working ants of the several sizes differed
wonderfully in shape, and in the form and number of the teeth. But the
important fact for us is, that though the workers can be grouped into castes of
different sizes, yet they graduate insensibly into each other, as does the
widely-different structure of their jaws. I speak confidently on this latter
point, as Mr. Lubbock made drawings for me with the camera lucida of the jaws
which I had dissected from the workers of the several sizes. With these
facts before me, I believe that natural selection, by acting on the fertile
parents, could form a species which should regularly produce neuters, either
all of large size with one form of jaw, or all of small size with jaws having a
widely different structure; or lastly, and this is our climax of difficulty,
one set of workers of one size and structure, and simultaneously another set of
workers of a different size and structure;—a graduated series having been first
formed, as in the case of the driver ant, and then the extreme forms, from
being the most useful to the community, having been produced in greater and
greater numbers through the natural selection of the parents which generated
them; until none with an intermediate structure were produced. Thus, as I
believe, the wonderful fact of two distinctly defined castes of sterile workers
existing in the same nest, both widely different from each other and from their
parents, has originated. We can see how useful their production may have been
to a social community of insects, on the same principle that the division of
labour is useful to civilised man. As ants work by inherited instincts and by
inherited tools or weapons, and not by acquired knowledge and manufactured instruments,
a perfect division of labour could be effected with them only by the workers
being sterile; for had they been fertile, they would have intercrossed, and
their instincts and structure would have become blended. And nature has, as I
believe, effected this admirable division of labour in the communities of ants,
by the means of natural selection. But I am bound to confess, that, with all my
faith in this principle, I should never have anticipated that natural selection
could have been efficient in so high a degree, had not the case of these neuter
insects convinced me of the fact. I have, therefore, discussed this case, at
some little but wholly insufficient length, in order to show the power of
natural selection, and likewise because this is by far the most serious special
difficulty, which my theory has encountered. The case, also, is very
interesting, as it proves that with animals, as with plants, any amount of
modification in structure can be effected by the accumulation of numerous,
slight, and as we must call them accidental, variations, which are in any
manner profitable, without exercise or habit having come into play. For no
amount of exercise, or habit, or volition, in the utterly sterile members of a
community could possibly have affected the structure or instincts of the
fertile members, which alone leave descendants. I am surprised that no one has
advanced this demonstrative case of neuter insects, against the well-known
doctrine of Lamarck. Summary.—I have
endeavoured briefly in this chapter to show that the mental qualities of our
domestic animals vary, and that the variations are inherited. Still more
briefly I have attempted to show that instincts vary slightly in a state of
nature. No one will dispute that instincts are of the highest importance to
each animal. Therefore I can see no difficulty, under changing conditions of
life, in natural selection accumulating slight modifications of instinct to any
extent, in any useful direction. In some cases habit or use and disuse have
probably come into play. I do not pretend that the facts given in this chapter
strengthen in any great degree my theory; but none of the cases of difficulty,
to the best of my judgment, annihilate it. On the other hand, the fact that
instincts are not always absolutely perfect and are liable to mistakes;—that no
instinct has been produced for the exclusive good of other animals, but that
each animal takes advantage of the instincts of others;—that the canon in
natural history, of “natura non facit saltum” is applicable to instincts as
well as to corporeal structure, and is plainly explicable on the foregoing
views, but is otherwise inexplicable,—all tend to corroborate the theory of
natural selection. This theory is, also, strengthened by some few other facts in regard to instincts; as by that common case of closely allied, but certainly distinct, species, when inhabiting distant parts of the world and living under considerably different conditions of life, yet often retaining nearly the same instincts. For instance, we can understand on the principle of inheritance, how it is that the thrush of South America lines its nest with mud, in the same peculiar manner as does our British thrush: how it is that the male wrens (Troglodytes) of North America, build “cock-nests,” to roost in, like the males of our distinct Kitty-wrens,—a habit wholly unlike that of any other known bird. Finally, it may not be a logical deduction, but to my imagination it is far more satisfactory to look at such instincts as the young cuckoo ejecting its foster-brothers,—ants making slaves,—the larvæ of ichneumonidæ feeding within the live bodies of caterpillars,—not as specially endowed or created instincts, but as small consequences of one general law, leading to the advancement of all organic beings, namely, multiply, vary, let the strongest live and the weakest die. |